Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching.

Identifieur interne : 001069 ( Main/Exploration ); précédent : 001068; suivant : 001070

Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching.

Auteurs : Sergei A. Filichkin [États-Unis] ; Michael Hamilton [États-Unis] ; Palitha D. Dharmawardhana [États-Unis] ; Sunil K. Singh [États-Unis] ; Christopher Sullivan [États-Unis] ; Asa Ben-Hur [États-Unis] ; Anireddy S N. Reddy [États-Unis] ; Pankaj Jaiswal [États-Unis]

Source :

RBID : pubmed:29483921

Abstract

Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns - a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses.

DOI: 10.3389/fpls.2018.00005
PubMed: 29483921
PubMed Central: PMC5816337


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching.</title>
<author>
<name sortKey="Filichkin, Sergei A" sort="Filichkin, Sergei A" uniqKey="Filichkin S" first="Sergei A" last="Filichkin">Sergei A. Filichkin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Michael" sort="Hamilton, Michael" uniqKey="Hamilton M" first="Michael" last="Hamilton">Michael Hamilton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha D" sort="Dharmawardhana, Palitha D" uniqKey="Dharmawardhana P" first="Palitha D" last="Dharmawardhana">Palitha D. Dharmawardhana</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singh, Sunil K" sort="Singh, Sunil K" uniqKey="Singh S" first="Sunil K" last="Singh">Sunil K. Singh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sullivan, Christopher" sort="Sullivan, Christopher" uniqKey="Sullivan C" first="Christopher" last="Sullivan">Christopher Sullivan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ben Hur, Asa" sort="Ben Hur, Asa" uniqKey="Ben Hur A" first="Asa" last="Ben-Hur">Asa Ben-Hur</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reddy, Anireddy S N" sort="Reddy, Anireddy S N" uniqKey="Reddy A" first="Anireddy S N" last="Reddy">Anireddy S N. Reddy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29483921</idno>
<idno type="pmid">29483921</idno>
<idno type="doi">10.3389/fpls.2018.00005</idno>
<idno type="pmc">PMC5816337</idno>
<idno type="wicri:Area/Main/Corpus">000F49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F49</idno>
<idno type="wicri:Area/Main/Curation">000F49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F49</idno>
<idno type="wicri:Area/Main/Exploration">000F49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching.</title>
<author>
<name sortKey="Filichkin, Sergei A" sort="Filichkin, Sergei A" uniqKey="Filichkin S" first="Sergei A" last="Filichkin">Sergei A. Filichkin</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hamilton, Michael" sort="Hamilton, Michael" uniqKey="Hamilton M" first="Michael" last="Hamilton">Michael Hamilton</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dharmawardhana, Palitha D" sort="Dharmawardhana, Palitha D" uniqKey="Dharmawardhana P" first="Palitha D" last="Dharmawardhana">Palitha D. Dharmawardhana</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singh, Sunil K" sort="Singh, Sunil K" uniqKey="Singh S" first="Sunil K" last="Singh">Sunil K. Singh</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sullivan, Christopher" sort="Sullivan, Christopher" uniqKey="Sullivan C" first="Christopher" last="Sullivan">Christopher Sullivan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ben Hur, Asa" sort="Ben Hur, Asa" uniqKey="Ben Hur A" first="Asa" last="Ben-Hur">Asa Ben-Hur</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Computer Science, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Computer Science, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Reddy, Anireddy S N" sort="Reddy, Anireddy S N" uniqKey="Reddy A" first="Anireddy S N" last="Reddy">Anireddy S N. Reddy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO</wicri:regionArea>
<placeName>
<region type="state">Colorado</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR</wicri:regionArea>
<placeName>
<region type="state">Oregon</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns - a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">29483921</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching.</ArticleTitle>
<Pagination>
<MedlinePgn>5</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2018.00005</ELocationID>
<Abstract>
<AbstractText>Abiotic stresses affect plant physiology, development, growth, and alter pre-mRNA splicing. Western poplar is a model woody tree and a potential bioenergy feedstock. To investigate the extent of stress-regulated alternative splicing (AS), we conducted an in-depth survey of leaf, root, and stem xylem transcriptomes under drought, salt, or temperature stress. Analysis of approximately one billion of genome-aligned RNA-Seq reads from tissue- or stress-specific libraries revealed over fifteen millions of novel splice junctions. Transcript models supported by both RNA-Seq and single molecule isoform sequencing (Iso-Seq) data revealed a broad array of novel stress- and/or tissue-specific isoforms. Analysis of Iso-Seq data also resulted in the discovery of 15,087 novel transcribed regions of which 164 show AS. Our findings demonstrate that abiotic stresses profoundly perturb transcript isoform profiles and trigger widespread intron retention (IR) events. Stress treatments often increased or decreased retention of specific introns - a phenomenon described here as differential intron retention (DIR). Many differentially retained introns were regulated in a stress- and/or tissue-specific manner. A subset of transcripts harboring super stress-responsive DIR events showed persisting fluctuations in the degree of IR across all treatments and tissue types. To investigate coordinated dynamics of intron-containing transcripts in the study we quantified absolute copy number of isoforms of two conserved transcription factors (TFs) using Droplet Digital PCR. This case study suggests that stress treatments can be associated with coordinated switches in relative ratios between fully spliced and intron-retaining isoforms and may play a role in adjusting transcriptome to abiotic stresses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Filichkin</LastName>
<ForeName>Sergei A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hamilton</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dharmawardhana</LastName>
<ForeName>Palitha D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Sunil K</ForeName>
<Initials>SK</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sullivan</LastName>
<ForeName>Christopher</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ben-Hur</LastName>
<ForeName>Asa</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Computer Science, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reddy</LastName>
<ForeName>Anireddy S N</ForeName>
<Initials>ASN</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jaiswal</LastName>
<ForeName>Pankaj</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>02</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">abiotic stress</Keyword>
<Keyword MajorTopicYN="N">alternative splicing</Keyword>
<Keyword MajorTopicYN="N">differential intron retention</Keyword>
<Keyword MajorTopicYN="N">isoform switching</Keyword>
<Keyword MajorTopicYN="N">stress adaptation</Keyword>
<Keyword MajorTopicYN="N">transcriptome</Keyword>
<Keyword MajorTopicYN="N">western poplar</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>01</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>2</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29483921</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2018.00005</ArticleId>
<ArticleId IdType="pmc">PMC5816337</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jun 5;109(23):9197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22615385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Dec;27(12 ):3294-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26603559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Dec 15;30(24):3506-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25165095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(6):1091-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17319848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Aug;27(8):2083-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26286536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2015 Jan;16(1):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25452588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2013 Mar 11;24(5):517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23434411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2005 May 1;118(Pt 9):1773-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cell Biol. 2011 Oct 13;12 :45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21995518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 29;14:359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23718132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Feb;173(2):1502-1518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28049741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Jan;20(1):45-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006;34(21):6147-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Nov;47(11):1242-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26437032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Mar;40(6):2454-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22127866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Oct;207 (2):465-480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28839042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Feb;164(2):765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24394777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jun;22(6):1184-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Feb;26(2):754-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24532591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2011 Nov-Dec;2(6):875-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21766458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2013;47:139-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274751</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3640-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Dec;72(6):935-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22913769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 13;10(4):e0123225</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25867623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3657-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2010 Dec;38(6):1615-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2012 Jul 02;7:20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22747664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Nov;24(11):1774-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25258385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress Chaperones. 2013 Jul;18(4):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23334891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 14;6:528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26236324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 24;7:11706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27339290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):189-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12502788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2016 Nov 21;39(4):508-522</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27840108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 04;15:431</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24897929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 May;37(9):3083-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2012 Jan 31;13(1):R4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Sep 10;15:780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25209012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):4731-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21737415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2015 Apr;24:125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25835141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):83-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19863731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(11):2991-3007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 2;103(18):7175-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16632598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23 (3):1107-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Aug 15;20(16):2250-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16912275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 19;446(7138):926-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17361132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rice (N Y). 2012 Mar 08;5(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24764506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2014 Apr 17;14:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Med. 2015 May 15;7(1):45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26113877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2008 Dec;40(12):1413-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18978789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2015 Feb;8(2):207-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25680774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 May 10;8:694</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28539927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2013 Jul;14(7):622-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23681439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Mar;26(3):996-1008</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24681622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 May;126(1):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11351099</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Colorado</li>
<li>Oregon</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Oregon">
<name sortKey="Filichkin, Sergei A" sort="Filichkin, Sergei A" uniqKey="Filichkin S" first="Sergei A" last="Filichkin">Sergei A. Filichkin</name>
</region>
<name sortKey="Ben Hur, Asa" sort="Ben Hur, Asa" uniqKey="Ben Hur A" first="Asa" last="Ben-Hur">Asa Ben-Hur</name>
<name sortKey="Dharmawardhana, Palitha D" sort="Dharmawardhana, Palitha D" uniqKey="Dharmawardhana P" first="Palitha D" last="Dharmawardhana">Palitha D. Dharmawardhana</name>
<name sortKey="Hamilton, Michael" sort="Hamilton, Michael" uniqKey="Hamilton M" first="Michael" last="Hamilton">Michael Hamilton</name>
<name sortKey="Jaiswal, Pankaj" sort="Jaiswal, Pankaj" uniqKey="Jaiswal P" first="Pankaj" last="Jaiswal">Pankaj Jaiswal</name>
<name sortKey="Reddy, Anireddy S N" sort="Reddy, Anireddy S N" uniqKey="Reddy A" first="Anireddy S N" last="Reddy">Anireddy S N. Reddy</name>
<name sortKey="Singh, Sunil K" sort="Singh, Sunil K" uniqKey="Singh S" first="Sunil K" last="Singh">Sunil K. Singh</name>
<name sortKey="Sullivan, Christopher" sort="Sullivan, Christopher" uniqKey="Sullivan C" first="Christopher" last="Sullivan">Christopher Sullivan</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001069 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001069 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29483921
   |texte=   Abiotic Stresses Modulate Landscape of Poplar Transcriptome via Alternative Splicing, Differential Intron Retention, and Isoform Ratio Switching.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29483921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020